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ABST RACT

Stagnation-point heat transfer in a partially ionized diatomic gas

is considered. The concept of frozen thermal conductivity is used, and

a simplified "binary diffusion" model of the gas is proposed. In this

model the charge-exchange cross-section for atom-ion collisions is taken

t,- be infinite so there is no relative diffusion of the atoms and the ion-

electron pairs. This permits the diffusion effects to be dealt with as if

there were only two components, molecules and atom-ion-electron

particles, and thus greatly simplifies the calculations. However, the

thermodynamic and transport properties are evaluated using all four

components, molecules, atoms, ions, and electrons. With this model,
calculations are made for both frozen and equilibrium boundary layers in

nitrogen up to about 60, 000 ft/sec, and arguments are presented for

applying the resalts to air. The results show the equilibrium heat transfer

rate to be progressively smaller than the frozen rate as the velocity in-

creases above 30, 000 ft/sec, the ratio reaching Z/3 at 50, 000 ft/sec.

Simple correlation formulas for the results are given.
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LIST OF SYMBOLS

A Constant in the electronic thermal conductivity expression,

Eq. (3. 22).

a Stagnation-point velocity gradient.

C 1 , C2  Functions in the equilibrium constants for dissociation and

ionization, Eqs. (3.12) and (5.5).

c .i Specific heat at constant pressure per unit mass of species i.

cp Frozen specific heat at constant pressure per unit mas.s of the

mixture.

C. Mass fraction of species i.

D I Binary diffusion coefficient, Eq. (3.14).

0' Diffusion coefficient for binary diffusion model, Eq. (3.1 8).

D/Dt Convective derivative operator following the mass-average

velocity.

F1 - F 8  Functions of the thermodynamic and transport properties

defined in the Appendix.

G Correlation quantity, Eq. (6. 3b).

f-5 , 4t , nondimensional stream function.

f df/di1 , normalized velocity, u/u 8 .

h Enthalpy per unit mass of species i.

0 Chemical enthalpy per unit mass of species i.

h Enthalpy per unit mass of mixture, Eq. (3. 8).

0 Dissociation energy per unit mass of atoms and ions.
hD

hl 0Ionization energy per unit mass of ions.

j Index which is unity for axisymmetric flow and zero for

two-dimensional flow.
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k. Thermal conductivity of species i.1

k Frozen thermal conductivity of mixture.

L Lewis number, Eq. (3.24).

SEffective Lewis number, Eq. (6. 2).

mi Particle mass of species i.

Sm.. Reduced mass, (m."1 + m. )

Nu/Re1/2 Heat transfer parameter based on wall conditions, Eq. (4.14).

n. Number density of species i.

n Number density of mixture.

n 0  Number density of original undissociated molecules, Eq. (3. 2).

Pf'Ph Potential functions defined in the Appendix.

Pi Partial pressure of species i.

p Pressure of mixture.

Q Partition function.

q Energy flux.

R Gas constant for the molecules, K/mM.

r Radius of axisymmetric body in plane normal to axis.

s Normalized fraction dissociated, 1/Ps"

T Absolute temperature.

TD, TI Dissociation and ionization temperatures, Eqs. (5. 1) and (5. 2).

V.(Ui, V) Diffusion velocity of species i.

1/2
V,0  Flight velocity, (2hs)

u, v Components of mass average velocity.

w. Mass rate of formation of species i.1

x, y Distances along and normal to body surface.

Z Compressibility factor, p/pRT.
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Fraction of atoms ionized.

Fraction of molecules dissociated.

'1 Similarity variable, Eq. (4.6).

6 Normalized temperature, T/T 5 .

K Boltzmann' s constant.

Ati Viscosity of species i.

M• Viscosity of mixture.

V .. Frequency of collision of a species i particle with species j particles.

p Mass density of mixture.

o Prandtl number, c pAk.
p

* Vibrational contribution to molecule specific heat, Eq. (A. 15b).

* Subscripts

A Atom.

D Dissociation.

E Electron.

el Electronic partition function.

I Ion or ionization.

M Molecule.

o Reference condition.

R Atom-ion-electron particle in binary diffusion model.

r Rotation.I aInviscid stagnation conditions.

v Vibration.

Superscript

Corrected for proper wall conditions, Eq. (5. 9).
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I. INTRODUCTION

The advent of interest in the return to earth of space vehicles has

recently stimulated study of atmospheric entry at velocities higher than earth-

satellite velocity. As with all high speed atmospheric flight, the heating problem

is a major concern and so some attention has been focused on heating at speeds

from 26, 000 to 40, 000 ft/sec or more. While radiative heating increases

rapidly with flight speed and can btcome an important problem at these speeds,

the present paper is concerned with convective (or aerodynamic) heating. This

subject has been extensively studied at lower speeds in connection with ballis-

tic missile technology and is well in hand- When interest shifts to higher

speeds, one must ask whether a simple extrapolation of the lower speed work

will suffice or whether there are new physical phenomena which enter whose

effects are sufficiently in doubt so the e:Arapolation is uncertain.

In the case of high speed flight in air at least one new phenomenon

does appear, and this is ionization. Figure 1 shows on an altitude-velocity

plot the equilibrium stagnation temperature and compressibility factor Z.

Also shown is a line for 1% ionization and typical trajectories for lunar

and interplanetary vehicles. We see that the lunar vehicle traverses a

region of ionization greater than 1%, as would any vehicle whose entry

velocity is over 30, 000 ft/sec. The presence of electrons in the air may

have an important effect on the transport properties which determine the

aerodynamic heating. Electrons have high diffusivity which will augment

the diffusion of ion-electron pairs to the wall, where the ionization energy

may be released during recombination. They may also become dominant

transporters of translational energy, and thus enhance the thermal conductivity

of the air, also tending to increase the heating. To indicate the amount of
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energy invested in ionization, Fig. 2 shows the fractions of the equilibrium

stagnation enthalpy of air contributed by thermal energy (translation, rota-

tion, and vibration), dissociation energy and ionization energy, at various

flight speeds for stagnation pressure of 1 atmosphere in nitrogen. The

increasing importance of the ionized component at high speeds is evident.

A number of investigations of convective heat transfer in partially

ionized air at a stagnation point have appeared recently. Adams1 estimated

the heat transfer increase due to ionization in a frozen boundary layer,

using a Lewis number of unity for the atoms and two for the ion-electron

pairs, with a thermal conductivity proportional to the one-half power of the

temperature up to 8, 000°K, and the five-halves power above that. He found

that up to 45, 000 ft/sec there was a maximum increase of 30U% above the

extrapolation of lower speed theories. Three other investigations2 3,34

have dealt with the equilibrium boundary layer, using the transport pro-

perties of Hansen. 5 These are "equilibrium" transport properties in which

the contributions of dissociation and ionization are included in the specific

heat and thermal conductivity. The results indicate heat transfer rates

somewhat less than those found by Adams. 1 Finally, heat transfer in ionized

nitrogen has been studied by Scala and Warren and by Pallone and VanTas-

sell, 7 also for thermodynamic equilibrium. Scala uses his own values of

nitrogen transport properties as described in Ref. 8, while Pallone and

VanTassell use transport properties developed by Yos. 9 Scala finds a very

rapid rise in heat transfer above 30, 000 ft/sec, leading to values larger

by a factor of 2. 5 than the other theories at 35, 000 ft/sec. Pallone and

VanTassell7 find no such effect, and attribute the differences to different

transport properties. Scala uses a charge-exchange cross-section for
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N-N+ collisions which is two orders of magnitude smaller than the oneused by Yos, and an N 2-N + cross-section oae order of magnitude smaller.

This has a major effect on the equilibrium thermal conductivity, resulting

in Scala's value being one to two orders of magnitude above Yos' value in

the range from 10, 000 K to 20, 000 K.

Experimental data included in Refs. 2, 4, and 6 agree with the

respective theories. Only the data of Refs. 2 and 6 extend well above

30, 000 ft/sec and they disagree strongly there.

The present theoretical investigation of stagnation point heat

transfer was undertaken in conjunction with a companion experimental

23shock-tube study. It differs from previous work in several respects.

First, both frozen and equilibrium boundary layer flow are studied with

the same gas model. Frozen flow is important since the high velocity

flight regime is at high altitudes where the flow may well be frozen.

Second, use is made of the "frozen" specific heat and thermal conductivity

definitions in both the frozen and equilibrium cases. Third, a simplified

binary diffusion model of an ionized diatomic gas is used to obtain the

transport properties. The great simplicity and success of two-

component models of air in treating dissociated heat transfer suggested

the advantages that would exist if a similar model of ionized gases was

possible. Such a model has been developed by making use of the fact

that the cross-section for exchange of charge between an atom and its

ion is much larger than other kinetic cross-sections. It should be noted,

however, that this model still has molecules, atoms, atomic ions, and

electrons. It is only binary witLh respect to diffusion, i. e., the diffusional
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velocities of the atoms, ions, and electrons are taken to be equal, with

a diffusional mass flux of these species equal and opposite to that of the

molecules. With this model, analytic expressions for the transport

properties can be derived, avoiding the necessity for elaborate curve

fitting.

The binary diffusion model also makes the calculation of a frozen

boundary layer of manageable size, since only one diffusion equation must

be used. The ultimate test of the accuracy of this model rests on a

comparison with experiment and with calculations using more detailed

models of ionized gases.

In the present paper, the stagnation-point boundary layer problem

for the binary diffusion model is solved in the case of nitrogen, using the

most recent estimates of nitrogen transport properties. Some comments

are made on the application of these results to air.

In the subsequent sections the boundary layer equations will be

presented, the thermodynamic and transport properties of the binary

diffusion model have developed, and the calculations and results

discussed.

I
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II. BOUNDARY LAYER EQUATIONS

The equations describing the stagnation-point boundary layer in
11

a chemically-reacting gas are well known. The momentum and over-all

mass conservation equations are

~ (2.1)

(2.2)

For each chemical species a mass conservation condition states

which upon using Eq. (2. 2) and the boundary layer simplifications becomes

(since r is a function of x only)

(2.3)

Finally, the energy equation for the stagnation-point (where pressure and

j dissipation terms can be neglected) can be written as

0.b) (2.4)

where h is the enthalpy of the mixture, defined by

(2.5)



and qy is the energy flux vector component normal to the surface given

by

(2.6)

The energy flux has two parts. The first is the Fourier heat conduction

with k the frozen thermal conductivity, i. e., the thermal conductivity the

mixture would possess if no chemical change occurred when a temperature

gradient was impressed on it. The second part is the energy flux due to

the enthalpy carried by diffusion.

A useful alternative form of the energy equation, in terms of

temperature, can be obtained by using the definitions of the component

specific heats, cpi, and frozen specific heat of the mixture, cp

~ ~ *(2.7)

When Eq. (2. 5) is differentiated, and Eq. (2. 7) is used, we find

'bt (2.8)

When inserted on the left side of Eq. (2. 4), this leads, with Eq. (Z. 6) to

Ib) 21Sz' (2.9)
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For the equilibrium case the ci are determined by T ( and the

constant boundary layer pressure p ) so Eq. (2. 9) is the convenient form

of the energy equation. For the frozen case, the ci are determined by the

species mass conservation equations (2. 3). When we use them to eliminate

the Dci/Dt term in Eq. (2. 9) we find

(2.10)

which, with wi = 0, is the energy equation we will use for the frozen case.

As pointed out in the Introduction, we will use a binary diffusion

model of a diatomic gas, the two species being molecules denoted by

subscript M and atom-ion-electron particles which we will denote by

subscript R. By making use of the relation

the diffusion terms in the energy equations (2. 9) and (2. 10) for the binary

diffusion model may be written

(2. lib)

We assume that the diatomic gas consists of a single atomic component.

When this theory is applied to a mixture such as air, this implies the

assumption that the ratio of oxygen to nitrogen is invariant through the

boundary layer.

-7-



When these relations are inserted into (2. 10) with w. = 0, and into (2.9)

we have the energy equations appropriate to the binary diffusion model

under frozen and equilibrium conditions respectively.

The boundary conditions are:

O u c.% s (2. 12b)

where we have taken a fully catalytic wall.

To make use of these equations, we must now specify the thermo-

dynamic and transport properties of the gas. Then the solutions of the

equations will provide us with the heat transfer to the wall which is found

by evaluating Eq. (2. 6) at y = 0.
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III. THERMODYNAMIC AND TRANSPORT PROPERTIES

In this section we will give the thermodynamic properties of the

ionized gas, explain the physical basis for the binary diffusion model, and

give explicit expressions for the transport properties used in the numerical

calculations.

Thermodynamic Properties

We are dealing with a mixture of molecules, atoms, atomic ions,

and electrons, denoted by subscripts M, A, I, and E respectively. For

each component with number density ni , partial pressure pi, specific

heat c ., enthalpy h. and dissociation and ionization enthalpy h.° we have

K Lw f (3.1)

Let P denote the fraction of molecules dissociated and a the fraction of atoms

ionized. Then for n molecules in the undissociated state we find0

n-o-I•) n A Z2 Vo I(P- Y11 ,Vt2o P at- (3.2z)

The corresponding mass fractions are

The specific heats are all 5K/2 per particle except for the molecule which

also has an additive rotational contribution of ZK/2 and a vibrational contri-

bution of O. Therefore, the specific heats per unit mass are

2 YIA )4 ff (3.4)

* (T,/rT)% •'wT(eT'/r- I)"Tvt
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Finally, the dissociation energy per unit mass of the atoms and ions will

be called h0 while the ionization energy per unit mass of the ions is hj0
be l

so the enthalpies per unit mass are

TWIT,(3.[5)"4L" '€'eAT+'kjO+ AT, *S('r,,TXe"_r 1)" 35

The properties of the mixture can now be found. By summing the

partial pressures the equation of state becomes

-,ft,.Tz ,ZRT, ZI +( .'). (3.6)

where R is the gas constant for the molecules, K/rI. The mixture frozen

specific heat is

'C ' ~cA~(-X.4~ + P+.i (3.7)
and the enthalpy per unit mass is

As mentioned in the Introduction, for diffusion purposes we will

consider the gas to be a binary mixture of molecules and atom-ion-electron

particles, denoted by subscript R. The mass fraction and specific heat of

species R are found from Eqs. (3.3) and (3.4) to be

•' - t• C-elt-"c~i+• (3. 9a)
which of course agree with cM + C 1 and Cc + Cc C

c R l M pM R pR P*

The corresponding enthalpy is found from Eqs. (3. 3), (3. 5) and (3. 9a) as

Alt O (# (AtAA+<4X c +.t gfcV )
(3. 9b)

which agrees with c h h.

w cMhM + c h
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The summation term on the left side of the equilibrium energy

equation (2. 9) is a purely thermodynamic term which represents the

reaction contribution to the convection of enthalpy (or reaction specific

heat times temperature convection). Using Eqs. (3. 3), (3. 4), (3.5) and

(3. 9b) it can be written

"b'1 (3.10)

When the gas mixture is in thermochemical equilibrium the

fractions dissociated and ionized are functions of the pressure and

temperature determined by expressions for the equilibrium constants of

the reactions ZA A.-_.* A+ + .

These expressions are found to be

_Tb/T
-- lle (3. Ila)

SL C a. (,T /T o)-4t - T X/T(3 1lb

I--. I FdJI+2ac) ). (3. lib)

where

1c -. - P QVQr Q ) (3.12)
ir T& (QEA)L



c

wX QI 1(Con't)

Here T is a reference temperature later taken to be the external tempera-

ture, T and T are the dissociation and ionization temperatures respec-
D I

tively, Q and Q are the vibrational and rotational partition functions of
v r

the molecule, and the Q are the various electronic partition functions.

The pressure p is the pressure in the boundary layer, which is the constant

stagnation pressure p1 . Since the internal partition functions depend only

on tempe rature, these relations give a and P in the equilibrium boundary

layer as functions of temperature alone.

Transport Properties

Our basic approach is to consider the flux of energy to be com-

posed of two parts; the diffusion of translational, rotational and vibrational

energy due to a temperature gradient and the flux of dissociation and ioni-

zation energy due to concentration gradients, treating each part independently
11

as was previously done in the dissociated air boundary layer. This is in

contrast to the method often employed in equilibrium boundary layer cal-

culations which makes use of an "equilibrium" or total thermal conducti-

vity. 5,12-17 The present approach is necessary if nonequilibrium boundary

layers are to be considered. It is, of course, still useful in the limiting

case of equilibrium, though there it has the disadvantage of requiring

specification of the mass fraction of each species present.

In the nonequilibrium case numerical solution of the boundary

layer equations for a partially dissociated and ionized gas is complicated

-12-



by the necessity of introducing a diffusion equation for each species present.

We shall now show that a useful approximation can be made which requires

only a single diffusion equation, leading to what we shall call a binary

diffusion model.

In Fig. 3 are shown some elastic collision cross-sections for N,

N2 , and A. Also shown are charge-exchange cross-sections for A, Xe,

and N2 colliding with their ions. What is readily apparent from these

measurements is that the charge-exchange cross-seclion for the collision

of a particle with its ion is nearly a factor of ten higher than the kinetic

cross-sections which determine thermal conductivity, viscosity and diffusion

coefficients of unlike species. While the important cross-section for the

N-N+ charge-exchange collision has not been measured, an estimate by

9 +
Yos places it close to that for A-A

In considering the relative diffusion of molecules, atoms, ions

and electrons, we would expect the diffusion velocities of the atoms and

their ions to be nearly equal, because the large charge-exchange cross-

section would make relative motion of the atoms and ions very difficult.

Certainly in the limit of infinite charge-exchange cross-section, both atomns

and ions would have equal diffusional velocities. Now a similar statement

can be made for the diffusional velocities of the ions and electrons, for an

ambipolar diffusion of ion-electron pairs will always occur within diffusion

layers which are thick compared to the Debye distance. We can then con-

clude that, in the limit of a charge-exchange cross-section which is very

large compared with kinetic cross-sections, the atoms, ions, and electrons

will diffuse with equal velocities, and may be considered a single component

when determining the particle flux. The molecules then constitute the second

-13-



component having an oppositely-directed diffusional velocity. This con-

stitute@ the binary diffusion model approximation.

We now proceed to the determination of the diffusional velocity

of the atoms, ions, and electrons. In a binary mixture of particles denoted

by the subscripts 1 and 2, the difference in diffusion velocities may be

related to the gradient of partial pressure by:18

V0p1 Y2-V (3.13)

in which m 12 is the reduced mass, (mi + m 2 ")", and is the fre-

quency of collision of particle 1 with type 2 particles. nIv 12 is the total

collision frequency of unlike particles and is determined by the binary

diffusion coefficient, D12 :

: Y1 v1  1v( (3.14)

The absolute value of the diffusion velocity is determined by the condition

of equality of mass flux:

FIz1 - IY
2. ZY2.(3.15)

For a mixture of molecules, atoms, ions and electrons, denoted

by subscripts M, A, I, and E respectively, in which the latter three

components have the same diffusional velocity, XtR' we replace Eq. (3.13)

by
(fA e' + ) (3.16)

-14-



This expresses the conservation of momentum of the atoms, ions, and

electrons: the gradient of the sum of the partial pressures is the rate of

gain of momentum of these particles while the term on the right is the rate

of loss of momentum by virtue of collisions of atoms and ions with the

molecules. (The electrons have negligible average momentum.) The

equality of mass flux can then be written as

Qn n1) AAYP Y.Y411 .,,(3.17)

An equation corresponding to Eq. (3. 14) may be used to define a

diffusion coefficient, for this binary diffusion model:

""A__ M__ __ __M(3.18)

K MA

If the ion-molecule and atom-molecule cross-sections are equal, then

would be the binary diffusion coefficient for atoms (or ions) diffusing through

molecules. In the numerical calculations of this paper, this equality has

been assumed for simplicity (see Fig. 3).

To obtain an explicit expression for V. from Eq. (3.16), we

eliminate YM by means of Eq. (3.17) and the collision frequencies using

Eq. (3.18). The result is

V -: -N oUVtAA4V4e (3.19)

The sum of the partial pressures can be written in terms of the (constant)

total pressure p and the number densities as

-15-



?AA

the last step coming from Eqs. (3. 2). This is differentiated and inserted

in Eq. (3. 19). If we use the gas law, Eq. (3. 6), the number densities,

Eqs. (3. 2), and the fact that for the atom-ion-electron species, c

according to Eq. (3.9), we may finally write the mass flux of that species

as

"Y14 Vbij*. +Y% + (i-)Va
S(3.20)

This mass flux equation reduces to the usual ambipolar diffusion

formula if we consider the proper limiting case. For a slightly dissociated

gas (P << 1) in which all the atoms have been ionized (a = 1), the last

factor of Eq. (3. 20) becomes 2 V 3, which is twice the value it would have

if the atoms were uncharged. On the other hand, for a completely dissoci-

ated but slightly ionized gas (3 = 1 , a << 1), the mass flux given by

Eq. (3. 20) is exactly zero, rather than the ambipolar value for ions diffusing

through atoms. This is a necessary consequence of our assumption as to the

importance of charge-exchange in reducing the relative diffusion of ions and

atoms to a value which is small compared with other transport effects. It

should be noted, therefore, that Eq. (3. 20) is not generally applicable to

the ambipolar diffusion of ions through atoms.

We turn next to a determination of the thermal conductivity of the

mixture of molecules, atoms, ions, and electrons. While there are several

empirical rules for determining the thermal conductivity of mixtures, 10,19,20

we will adopt the following simple approach. First, the contribution of the

-16-



ions to the thermal conductivity is smaller than that of the electrons by a

factor equal to the square root of the ratio of electron mass to ion mass,

and hence will be neglected. Secondly, the thermal conductivity of the

entire mixture will be assumed to be the sum of the thermal conductivities

of the electrons, as determined by Spitzer21 for a singly ionized plasma,

and the thermal conductivity of an atom-molecule mixture, as calculated by
22

Yun et al, for N 2 -N mixtures. The latter may be suitably approximated

by: -M A to.7)

AA 8.4, KI0 TO c(I/se '- ' '. (3.21)

which gives the correct value for pure N 2 (p = 0) at 300 0 K. The electron

thermal conductivity, kE, is shown in Fig. 4 and was approximated by

Ig" A T~ ,(3.22)

where A was determined by the electron density, nE. in the free stream.

Hence, the total thermal conductivity, k, becomes:

= 4A + Le'. (3. 23)

A more exact calculation, using the method described in Ref. 10,

showed that this approximation is accur.ate for a greater than a few percent.

The temperature dependence of kE is somewhat less than T because

of the logarithmic term in the coulomb cross-section.

-17-



As used in the calculations, the diffusivity, 9&, is made dimension-

less by dividing by the thermal diffusivity, k/pc , of a pure atomic gas at

p
the same heavy particle density, nM + nA + nI, and temperature as the

mixture, to give a Lewis number L, of:

L • (n,, + Y'A + V'T Y CPA ,./ . ,(3.24)

According to the discussion following Eq. (3. 18), &is the atom-molecule

binary diffusion coefficient and from the calculations of Yun et al2 L was

3 4found to be 0.6 for 10 < T < 104. Using this definition of L, the diffusive

mass flux, Eq. (3. 20) becomes_ L AL. +4 + -pVat],
7- [o*c (3.25)

in which the factor 2/Z is the ratio of the average particle mass p/n to the

atomic mass.

The viscosity of the mixture is relatively unimportant in deter-

mining the heat transfer, and appears in the boundary layer equations only

in the form of the Prandtl number, a, in the momentum equation. To

estimate the viscosity, we first assume that the ions contribute nothing

because of their large coulomb cross-section, so that the viscosity is equal

to the mole fraction of atoms and molecules times the viscosity of an atom-

molecule mixture having the relative proportions as found in the gas. Using

22the numerical results of Yun et al this becomes:

-(3.26)
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in which LA is the viscosity of the pure atomic gas and the term in

brackets is the mole fraction of atoms and molecules. Next, we assume

that the temperature dependence of LA and kA are identical, so that

' (3.27)

in which the Prandtl number of an atomic gas is taken as 2/3.

While this expression for a is reasonably accurate at high tem-

peratures, it gives the incorrect value of 0. 531 at a cold wall (Tw = 300°K,

a= = 0). This is the result of our simplifying assumption of Eq. (3.21)

that the ratio of atomic to molecular thermal conductivity is independent

of temperature. Since it has been shown that the heat transfer is princi-

pally dependent upon the transport properties in the free stream and only

slightly affected by the values of these properties at the wall, this

inaccuracy of aw and •±w will have a negligible effect upon the calculated

heat transfer. On the other hand, to form the heat transfer parameter,

Nu/Re1/2, from the calculated heat transfer one must use the correct

values of cw and Rw" This correction is discussed in Section V.

Finally, we apply the binary diffusion approximation to the

diffusion Eq. (2. 3) for atoms and for ions, in a frozen boundary layer.

Using Eqs. (3. 3) for the mass fractions and putting the same diffusion

velocity for both species, we find

+ 01- 1 
(

Dt L(.8



Ttv% IZ 0(3.29)

Addition gives the• equation for the atom-ion-electron mass fraction c=

as

"b t (3. 30)

With the help of this relation we reduce Eq. (3. 29) to

lot (3. 31)

which determines the fraction of atoms ionized, a. However, the quantity

in square brackets is just the derivative of a following a diffusing atom-ion-

electron particle, so the equation states that a is constant following this

particle. Since all particles come from the edge of the boundary layer

where a = a., we conclude that in the frozen boundary layer, a = a. -
S

constant.
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IV. TRANSFORMATION OF EQUATIONS

By making use of Eq. (2.1 la) for the summation term and Eq. (3. 25)

for the diffusion velocity VR9 the diffusion equation for species R and the

energy equation for frozen flow, Eqs. (3. 30) and (2. 10) with w. = 0, can be1

written

a L

from Eq. (3. 31). The corresponding momentum and total mass conservation

relations are Eqs. (2.1) and (2.2), repeated here with the pressure term

i replaced by its external value in terms of the external velocity u5 and

density Ps :

(4.3)

(4.4)

The cylindrical radius r of the body has been taken as x sinc we eare

considering the vicinity of the stagnation-point.

For equilibrium flow the energy equation is obtained from Eq. (2. 9),

again using Eq. (3.25) in the summation terms from Eqs. (2.1 lb) and (3. 10).

In addition, we recognize that both a and e are given functions of T, so

-21-
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that grad 3 = (dp/dT) grad T and similarly for a. Then the energy

equation for equilibrium becomes
Sp.,, + ('h,, t i _.. 'I +.,,,.:

"IT +, aT L•& 45

Since exact similarity holds at a stagnation-point, we can now

reduce these partial differential equations to ordinary differential equations

in the stagnation-point similarity variable

•. k. '(4.6)

where the subscript o refers to a constant reference condition and a is

the stagnation-point velocity gradient u s/x. Normalized dependent varia-

bles are defined as

and are all taken to be functions of -n, in accord with the existence of

similar solutions. The inviscid stagnation-point quantities Ts and Ps

are constant but the velocity us = ax as mentioned above.

When v is eliminated from the convective derivative operator

D/Dt by use of (4.4), the diffusion, energy, and momentum con-

servation Eqs. (4. 1)-(4. 3) and (4. 5) become

-4- [0- (4.8)

-22 -



(4.09)

Whert r -,cM,./# o.lt

+ 4. (L.A,)

The corresponding form for the boundary conditions is found from Eqs. (2. 12)

as
q.=o ~ ~ VO 'C Vk - •'•lal .o - • ,,r,• s-o;

(4. 12a)

(4. 1 2b)

For the frozen case, Eqs. (4.8), (4. 9), and (4. 10) are to be solved

for f, 0, and s. For the equilibrium case, a and P are both determined

by T from thermodynamic considerations, as also pointed out in Section III,

and the two variables f and 0 are found from Eqs. (4.10) and (4. 11). In

this latter case, the boundary conditions on s in Eqs. (4.12) may be ignored.

The variable 71 defined in Eq. (4. 6) and used here differs from
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the usual variable, such as that of Fay and Riddell, by a factor a 1/2 and
0

the same is true of our function f. The present definitions result in the

appearance of the Prandtl number a in the momentum Eqj. (4. 10) instead of the

energy Eqs. (4.9)cr (4. 11), and reflect our choice of pk rather than the more

usual pj as the basic combination of fluid properties. Since the heat transfer

rate rather than the shear stress is of primary interest here, it seems more

suitable to relegate the only appearance of viscosity, which is in a, to

the momentum equation which is known to be weakly coupled to the energy

equation. This simplifies the difficult task of calculating the viscosity of

ionized gases, since a rough approximation will suffice in the momentum

equation. The frequent use of pg/ as basic is a holdover from the incom-

pressible point of view that the velocity profile could be found first and the

temperature profile calculated afterwards, and seems inappropriate to the

present-day emphasis on heat transfer rather than shear stress. For the

case of constant Prandtl number a = ao, the present equations can be put

into their more familiar form by replacing ij and f by ao1/2 - and

o 1/2z
0

The heat transfer rate at the wall is found by evaluating Eq. (2. 6),

which is also the quantity in the square bracket on the right side of Eq. (4. 5)

in the binary diffusion model. The transformed version of this is in the

square bracket of the first term on the right of Eq. (4. 11) except for some

cancelled constants. When they are restored, the wall heat transfer be-

comes, for frozen and equilibrium respectively,

1 W +_ 
__ __ 1.e e t s (4.13a)

6if. f. Z 'C-?AT,
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Z a
The thermodynamic and transport properties which appear in

Eqs. (4.8)-(4.13) are given in Section IMI as functions of a, P, and T, and

complete the relations necessary to solve the differential equations and

find the heat transfer rate -qw. A suitable nondimensional heat transfer

param,'zer is obtained by introducing the Nusselt and Reynolds numbers

based on wall conditions by

(-I %ocp VW__ 0.4 / %) W

I, m 'C- ) 14 ::VA (4.14)

For numerical integration, the differential equations are put in

a form in which the fluid properties do not have to be differentiated. The

transformation to this form, together with expressions for the thermo-

dynamic and transport properties as they are used in the calculations, is

given in the Appendix.
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V. CALCULATIONS

Calculations were made for both equilibrium and frozen boundary

layers, using the physical constants of nitrogen, which has a dissociation

energy of 9. 756 electron volts per molecule, and an ionization energy of

14.48 electron volts per atom. These lead to the following values of the

dissociation and ionization constants:

X 14 (5.1)

The rotational and vibrational temperatures of nitrogen are

"T - 2.9o K, Tv. 34000 K (5.3

so the rotational partition function may be approximated by its asymptotic

value 0r T/ZTr The vibrational partition function is Qv = [1 - exp

(-T -T)] while for the electronic partition functions we take

M - A-- 4. j. U (5.4)

Then the functions C 1 and C2 of Eqs. (3. 12) become
,,~~~~- O- I/"I'•,T

0--i'sa
C1 ) Ox 1.-33 J33&T, (5.5)
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where p5 is in dynes/cm2 and T is in OK.

The Lewis number L was defined in Eq. (3. 24) and its value

discussed immediately following that equation. We concluded that for

nitrogen, the beat estimate for L is 0. 6, and this is the value we used for

most of the calculations. However, in order to see the effect of possible

uncertainties in L, some calculations were made for L = 0. 3 and L = 1. 0.

All the calculations were done for an axisymmetric boundary layer

so we used

(5.6)

and in all cases the wall temperature was taken to be

TW -% 3000 s
~ 30 K.(5. 7)

Equilibrium Boundary Layer

For equilibrium external flow, the calculations were performed

by choosing values of j, TwI Ts and ps. Then as and P3s could be

determined from Eqs. (A. 32) and (A. 31). The equation of state, Eq. (3.6)

then yielded a value of ps, which combined with as to give an external

electron density nEs. From Fig. 4 a value of A corresponding to this

nEs was chosen. When combined with the nitrogen constants given above,

this procedure yielded all the necessary input information for the solution
h nd fan

of Eqs. (A. 21)-(A. 25), which was done by guessing Pw and Pw and

iterating.

Frozen Boundary Layer

The same procedure as for the equilibrium boundary layer was

followed in the case of a frozen boundary layer with equilibrium external

flow to determine the values of a s, 8a , and A. Of course, in this case,

I-27-



a is constant at the value a a and s = •sS is determined by a differential

equation instead of an algebraic one. The input information was used to

solve Eq. (A. l)-(A. 7) iteratively by guessing P , P , and P w

Re sults

The results of the calculations were expressed in terms of the

heat transfer parameter by use of Eqs. (A. 10) and (A. 28). As pointed out

in Section UI the viscosity and Prandtl number used in the calculations are

in error at low temperatures. A corrected heat transfer parameter was

computed using correct transport properties at Tw = 3000 K. If we denote

the corrected quantities by a prime, Eq. (4. 14) shows that

(.,, lx, / t/ 0"8

The properties on the left were found by the formulas of the present paper

while those on the right were taken as aw 0.713, w 0.179 x 10 =gcm-

sec for Tw = 300 0 K. The corrected heat transfer parameter for a 3000 K

wall is then related to the one actually calculated from Eqs. (A. 10) and

(A. 28) by

S1.1

(5. 9)

Calculations were performed for a wall temperature Tw of 300 0 K,

-22
and for a range of stagnation temperatures at four values of ps8: 102 I 0

1 and 10 atmospheres. The results are given in Table I.

In Fig. 5 the corrected heat transfer parameter from Eq. (5. 9)

is plotted against a flight velocity V. obtained by equating the stagnation

enthalpy to V. /2, i.e.,
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V. (2s)10)

Also included in Fig. 5 are the air and nitrogen calculations of

732
Pallone and Van Tassell, the air calculations of Cohen 3 and Hoshizaki, 2

6
and the nitrogen calculations of Scala and Warren. All these calculations

are for equilibrium air or nitrogen and all except Cohen's below 29, 100 ft/sec

use the equilibrium thermal conductivity and specific heat.

In the present calculations, the equilibrium case also involves the

equilibrium thermal conductivity and specific heat, though we do not

separate them as such. Inspection of the equilibrium energy equation (4. 11)

shows that if the factor (P/koPo ) (d0/dij) is factored out of the curly bracket,

what remains is the equilibrium thermal conductivity. Similarly, the second

term of Eq. (4. 11) yields the equilibrium specific heat as the coefficient of

(f/c po) (dO/di9). These expressions are calculated during the course of thE

boundary layer solutions and can be compared with expressions given by

others for the same quantities. A good standard of comparison for nitrogen

is the recent set of properties given by Yos 9, who used the most recent data

to make an accurate calculation of transport properties. When such a

comparison is made for equilibrium specific heat good agreement is found

between our values and his. Fairly good agreement is also obtained with

the air values of Hansen, 5 except for a bump at 3500 K due to oxygen

dissociation. Such agreement is not surprising since equilibrium specific

Ref. 9 does not contain values of equilibrium specific heat, which were

kindly provided in a private communication.
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heat is a purely thermodynamic quantity. A more interesting comparison

is shown in Fig. 6, where the equilibrium thermal conductivity of Yon for

N 2 and Hansen for air are shown, together with the results of the present

L = 0. 6 calculations, all for p. = I atm. It can be seen that the agreement

between the nitrogen conductivity of Yos and the present values are excellent.

This is particularly significant because the equilibrium thermal conductivity

involves the use of the binary diffusion model in the present formulation.

The agreement between our results and those of Yos in Fig. 6 lend

considerable support to this simple model in cases where the charge-

exchange cross-section is an order of magnitude bigger than the kinetic

cross-sections for unlike species. The air conductivity of Hansen differs

considerably from the nitrogen values, both at low temperatures, where the

effect of oxygen makes itself felt, and at the higher temperatures where air

should behave much like nitrogen. Most of this latter difference is

attributable, not to any real difference between air and nitrogen, but to

the more up-to-date cross-section information used by Yos. This can be

seen by comparing thc. equilibrium thermal conductivity for air also given

by Yos in Ref. 9, with Hansen's values. Except at low temperatures, Yos'

air values are very close to his nitrogen values, and so deviate considerably

from those of Hansen.
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VI. CORRELATION FORMULAS

The major uncertainty in the calculations presented here lies in

the inekact knowledge of the transport properties. If the results of such

calculations can be correlated in terms of the input data, then moderate

changes in future estimates of the transport properties will not require

a recalculation of the boundary layer solution. This procedure, which
I1

was used by Fay and Riddell, makes it possible to differentiate

between the effects due to the assumed numerical values of the transport

properties and those resulting from the assumptions as to the physical

processes which are important. In this section, we shall discuss such

a correlation. In addition, for practical calculation of heat tr"-%sfer

to hypersonic vehicles, it is most convenient for the heat transfer to be

expressed as a function of flight conditions rather than transport

property data. Since the heat transfer is primarily a function of

stagnation conditions, we also will give a correlation formula which

makes use of our transport property estimates but which explicitly

involves flight velocity and stagnation density and pressure, it being

assumed that the latter may be readily determined from the flight

conditions.

To determine a suitable form for a transport property

correlation which will account for a variation in L, we rewrite the wall

heat transfer rate, which is the quantity in curly brackets on the right
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side of Eq. (4. 5) evaluated at the wall. By using dhM = CpMdT we

find

i %fW all 1Z PA &MO 1 (6.1z)

in which the term involving a and P has been rearranged so that the

first term varies monotonically throughout the entire boundary layer and

the second term is zero in a frozen boundary layer. Defining an

effective Lewis number, i, in terms of stagnation conditions by

(6.2)

we would expect the heat transfer to be proportional to the integral of

Eq. (6. 1), except for the exponent of

N" L (I u) ji 1+. ' (6.3a)

Here the upper and lower terms in the curly bracket refer to equilibrium

and frozen flow, respectively, and we have made use of the fact that

(hR- hM) ) P= h - hM. (Notice that in actuality the quantity 1 + a (l -s)

is always very close to unity in the equilibrium case, and we took it to

be so.) The form of Eq. (6. 3a) is similar to that used in Ref. 11, where

n was found to be 0.52 for equilibrium and 0.63 for frozen flow.
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We have found that, if n = 0. 6, and we define

GA ) 1 (6. 3b)

the quantity (Nu/,' Re) /G correlates within 7 7% for 0. 3 < L < 1. 0 and

for both frozen and equilibrium flow at fixed stagnation conditions. These

values are given in Table I and plotted against (pk/c ) /(pk/c ) in

Fig. 8. Unlike the correlation of Ref. 11, however, the variation of

(Nu/ e) //G with varying stagnation conditions could not be correlated

as a function of the pk/c ratio alone, but was found to depend somewhat
p

upon stagnation pressure level also, as shown in Fig. 8. The final

correlation can be expressed as

* (N./P.~.4Y o.~8(6.4)
G ~

-0X00.oVg+o.ooq(log P04,)O071 (IoC1 f,)•'+ 0o-" (1j fsPO

where log ps is the logarithm to the base 10 of the stagnation pressure

in atmospheres. This formula holds within + 10% for P3s > 0.4. The

analogous line from Ref. 11, Eq. (58), is also given in Fig. 8, and we

see that points with no significant amount of ionization fit that line quite

well.

I The difference between the correlation of Ref. 11, and Eq. (6.4)

above deserves some comment. The calculations of Ref. 11 were

carried out for only a few selected stagnation conditions with dissociation

less than 60% and no effect of ionization, but over a wide range of wall
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temperatures. In the present calculations, the wall temperature has

been held fixed while the stagnation pressure has been varied by a

factor of 104, and we ranged from 12% dissociated to 94% ionized.

It is therefore our opinion that the correlation shown in Fig. 8 is

indicative of the effect of the variation of stagnation pressure (and hence

composition), while that of Ref. 11 reflects the effect of variation of

wall temperature for fixed stagnation conditions. Since the heat

transfer to cold walls is only slightly affected by wall temperature,

the present correlation is more significant than that of Ref. II for the

problem at hand.

A correlation in terms of flight conditions is given in Fig. 9,

which is a plot of (Nu/l e against flight velocity for L = 0. 6 and

various stagnation pressures. The correlation formulas are:

Equilibrium: (N,4R,&)' = 0.47 t0Oam< 14

"0. .47 CV W -. (6. 5a)

N so a.L o 1 .-0602 (101 &P

Frozen: 0-47 a

- 0.35 3-V 6

where V. is in kilofeet per second and log p is the logarithm to the

base 10 of the stagnation pressure in atmospheres. This correlation is

accurate to * 9%. These formulas are related to the wall heat transfer
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rate by Eq. (4. 14). For a 3000K wall, with the stagnation-point velocity

gradient a taken as the Newtonian value (2 po/lP) 1/ andh -h =V 2/2,

this becomes

__(0.00____ ITI

PSIc (6.6)

Here RN is the nose radius of curvature in feet, V.o is again measured

in kilofeet per second and ps and ps are measured in atmospheres and

amagats (1. 29 x 10.3 gm/cm3 or 2.45 x 10-3 slug/ft ) respectively.

-
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rate by Eq. (4. 14). For a 300°K wall, with the stagnation-point velocity

1/2
gradient a taken as the Newtonian value (2 ps/ps)/2 and h. -hw h V /2,

this becomes

SO iO(N.l v,.! X 1,f, .E+,.. <+"(6.6)

Here RN is the nose radius of curvature in feet, V., is again measured

in kilofeet per second and ps and ps are measured in atmospheres and

3 3-3 slgf3amagats (1. 29 x 10"3 gm/cm3 or 2.45 x 10 slug/ft ) respectively.
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VII. DISCUSSION

The results of the present theory show a marked difference

between the equilibrium and frozen boundary layer heat transfers in the

ionized region (V, > 30 kiloft/sec), the latter being greater than the former

as the velocity increases. This difference can be directly related to the

diffusive flux of atoms, ions, and electrons as given by Eq. (3. 25). While

in the frozen boundary layer, V a = 0 and V• is finite throughout the boundary

layer, in the equilibrium boundary layer 1 = 1 through the ionized portion

of the boundary layer, with the result that there is no diffusional mass flux

in this region of those species which can carry ionization and dissociation

energy to the wall. In other words, there is mass diffusion only where there

is a changing mass fraction of molecules, which occurs throughout the frozen

boundary layer but only near the wall for the equilibridIm boundary layer.

This result is in marked contrast to that for the dissociated gas

boundary layer, in which the heat transfer for frozen and equilibrium

boundary layers are nearly identical even for a Lewis number different

I1from unity. This lack of dependence of the heat transfer on chemical

kinetics follows from the binary nature of the dissociated mixture, and would

apply equally well to a partially ionized monatomic gas. In the equilibrium

ionized diatomic gas boundary layer, however, there is a layer of atoms

which separates the molecules at the wall from the ions in the free stream,

so that with respect to composition it is primarily a ternary mixture. This

can be seen in Fig. 7, -where the mass fractions of the various species are

plotted for both frozen and equilibrium flow at p5  I atm, T. = 16, 000K,
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L = 0. 6. Because of the large charge-exchange cross-section, this atomic

layer acts as an insulator, preventing ion-electron pairs from diffusing

toward the wall and thereby preventing the transport of ionization energy.

This insulating layer is absent in the frozen boundary layer, as seen in

Fig. 6, thereby permitting a higher heat transfer rate. One would expect

a similar effect in multiply-ionized monatomic gases.

The size of the numerical difference shown in Fig. 5 between the

frozen and equilibrium cases is undoubtedly influenced by the assumption

of infinite charge-exchange cross-section in the binary diffusion model.

However, as long as this cross-section is as large as it is presently thought

to be, more exact calculations should show a similar effect, though perhaps

not so large in magnitude.

When compared with the equilibrium N2 calculations of Pallone and

Van Tassell 7 at the same pressure (p8 = I atm), our results differ at the

most by a few percent at the highest velocities. This is not surprising,

in view of the previous discussion of the good agreement in equilibrium

specific heat and thermal conductivity between our calculations and those

of Yos9 used by Pallone and VanTassell. It confirms that the simple binary

diffusion model can be used for accurate prediction of the heating rate in

ionized diatomic gases.

AdamsI has estimated the increase in heat transfer due to

ionization in a frozen boundary layer by making use of the correlation

formulae of Fay and Riddell 1 together with assumptions as to the

effective Lewis numbers for atomic and ambipolar diffusion. According to

Fay, 10 Adams' estimate results in a nearly constant value of 0. 4 for
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(Nu/ Me) for flight velocities between 30 and 45 kilofeet/sec, which is

only about 10% above our frozen boundary layer calculation. This is

probably due to his choice of unity for L instead of the more realistic

value of 0.6.

When compared with the calculations of Scala and Warren for

equilibrium N 2 , our results (as well as those of Pallone and VanTassell)

show major disagreement in the ionized gas region. The difference is

undoubtedly due to the very small charge-exchange cross-section assumed

by Scala and Warren, as discussed in the Introduction, and for which we can

find no physical justification.

The differences in heat transfer between air and nitrogen at the

same flight velocity and density ought to be quite small, at least in the ionized

region. For a given stagnation enthalpy and pressure in air, the temperature

and composition are determined. For an equal stagnation enthalpy in nitro-

gen, but somewhat different (usually lower) pressure, an equal temperature

and hence approximately equal enthalpy of dissociation and ionization can

be found. For these corresponding flight conditions, the heat transfer

parameters in air and nitrogen ought to be very nearly the same. In view

of the fact that the heat transfer parameter in N2 is determined mostly by

flight velocity, being less affected by pressure (or density), we can expect

that the heat transfer parameters in air and nitrogei, are practically the

same at identical flight conditions. But Fig. 5 shows that the equilibrium

2 3air calculations of Hoshizaki and Cohen differ to some extent from our

equilibrium nitrogen calculations, which seems to contradict this

5expectation. However, both those investigations used Hansents air
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properties, and as discussed in connection with Fig. 6, his equilibrium

thermal conductivity is considerably different from more recent

estimates 9 for both air and nitrogen, while ours is in agreement with

these estimates. We feel that the differences between Hoshizaki's and

Cohen's air calculations and our nitrogen results are mostly attributable

to this difference in transport property estimates, rather than any real

difference in heat transfer rate between equilibrium air and equilibrium

nitrogen.

The present analysis of stagnation-point heat transfer in an

ionized diatomic gas has been limited to two cases: either complete

thermodynamic equilibrium throughout the boundary layer or frozen

atomic and ionic recombination. In both cases the calculations have

been done for equilibrium conditions at the edge of the boundary layer,

and fully catalytic wall conditions. There are a number of other non-

equilibrium effects which have not been considered, such as finite

recombination rate processes, unequal electron and heavy particle

temperature, the presence of an appreciable concentration of molecular

ions, vibrational heat capacity lag, radiative effects, and non-equilibrium

conditions at the edge of the boundary layer. These effects, some or all

of which may be important, will require more complex models than the

one proposed.
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VIII. CONCLUSIONS

1) Under the assumption that the atom-ion charge-exchange

cross-section is much larger than other cross-sections, it is possible

to treat the boundary layer in a dissociated and ionized diatomic gas as

a binary mixture for the purposes of determining the diffusive mass

fluxes.

2) Both equilibrium and frozen boundary layers may be treated

with equal ease through use of this model.

3) The results of our equilibrium boundary layer calculations

for N2 are in good agreement with other calculations using the

equilibrium thermal conductivity method and essentially the same

transport properties.

4) Heat transfer in a frozen boundary layer is greater than that

in an equilibrium boundary layer, the difference increasing with

velocity above 30 kilofeet/sec.
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APPENDIX

To put the differential equations in final form for numerical cal-

culation, we change the dependent variables in order to avoid having to

differentiate the fluid properties. It is convenient to consider the frozen

and equilibrium cases separately.

Frozen Boundary Layer

We introduce the variables, Ps, PS, f , and P by the definitions

*~ ~ * 2Lb) >(+ Al
(A. )

SF, Cie F, (A. 2)

I• •d (A. 3)

r' 4i' ' ec

dF" (A.4)

Then the governing differential Eqs. (4. 8)-(4. 10) become

dr f ? (A.5)

SC (A.6)

dbt
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d? F F f (A.?7)

This is a system of seven first order equations for the seven unknowns

ps p, fiP 0f, a s, f, and the corresponding boundary conditions from

Eqs. (4.12) are

(A. 9a)

~pt~~eor 4@ 4 I1 s-- I
(A. 9b)

The nondimensional heat transfer parameter of Eq. (4.14) is

written by using Eq. (4.13a) for (-qw) and the definitions (A. 1), (A. 2), and

(A. 4):

L (A.l10)

where

The F functions can be expressed in terms of the actual variables

of the problem by using the results of Section M. We chose to take the

reference conditions as external so subscript zero becomes subscript a.

The quantities appearing in the F functions can then be written:
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SAT='=A e" + o.72 +_(A.812)
'kA 8.4.,%10' TO I+F

~lC,^ - (IP),o.( +-o4K) ) (A.15a)

(A. 15b)

ATS*.~ ~ *.ZSf-_ TI

3 (pA (A.16)

+ I+=. +.ZK•8..xO• =

*. 2 .1. (0A- 7' " +1.18-. (A. 18)

- =(0.74.2 +) 'A * (A.19a)

t I-.19 )
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+4,, W, 6 06 0
4A~4

In the frozen case, a = a and 9 = •s in all these expressions.

Equilibrium Boundary Layer

Here we define the variables

-F,- -' c', if+ F1, F11 F,--_ •(A.21)

Q F-) (A. ZZ)

4:d4/' k (A. 2 3)

V. o/).(A. 24)

We then find for the governing differential equations

(F.? 41+ PI,',LLF.F (A. 25)

These are five first order equations for the five variables Ph fi pit Of f,

and the boundary conditions are
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O X e ( A. 27a)

I. s(A. 2 7b)

The heat transfer parameter is again obtained by inserting

Eq. (4. 13b) into Eq. (4.14). This time, using definition (A. 21), we find

LI,. " (A .Z 8)

All the quantities appearing in the new functions, F 6 and F 8 are

already defined in Eqs. (A. l2)-(A. 20), except a and P as functions of 0.

From Eqs. (3. 11) and (3. 1Z) of Section III, the relations between a, 3, and 0

are

S~where P5 is in dynes/cm2 and Ts in OK. If Eq. (A. 30) is solved for t

we find

ek 10
l- ,• (A. 29)
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When this is inserted into the ratio of Eqs. (A. 29) and (A. 30), the following

quartic equation for a as a function of 0 results:

o~j~(CC Ca

By using Descarte's rule of signs on the equation obtained from this one by

letting a = 1 + Q#)-1 one can show that there is one real value of a in

the interval 0 < a < 1, in accord with physical reality. When this root is

obtained for a given 0, substitution into Eq. (A. 31) gives the appropriate •.

The derivatives da /dB and dO/d0 which appear in Eq. (A. 22)

can be found as a function of a, 3, and 0 by combining the 0 derivatives

of Eqs. (A. 31) and (A. 32).
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Fig. 1 - Equilibrium stagnation temperature and compressibility factor
Z as a function of velocity and altitude. Typical trajectories
for lunar and interplanetary vehicles are also shown.
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Fig. 2 - Fractional distribution of equilibrium stagnation enthalpy among

thermal, dissociative and ionic modes for nitrogen at a pressure

of one atmosphere.
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Fig. 3 - A summary of average elastic collision cross-sections as a
function of gas temperature. For references to the sources
see Fig. 4 of Ref. 10.
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